A health economist’s guide to the AMS galaxy

Guest blogger Nikki Naylor (bio below) has written this post about a recent review on the cost-effectiveness of antimicrobial stewardship…

I’ll start this blog post off with a promise – I promise not to use any equations or unnecessarily complex terms that just describe logical concepts (something us economists do like to do on occasion). In return, I hope that you will see past the standard and not-to-exhilarating conclusion of “more evidence is needed” and see some of the more useful messages that sit within this recent review that we have published.

Continue reading

Three good reasons why not to “copperize” your hospital surfaces

I recently received an email from the Copper Development Association entitled “Five Good Reasons to Install Antimicrobial Copper Touch Surfaces”. The five reasons are as follows:

  1. “Continuous and significant bioburden reduction, 24/7.
  2. Improved patient outcomes.
  3. A supplement to standard hygiene practices.
  4. Simple, cost-effective intervention.
  5. Payback in less than one year.”

I agree with all of these points in principle, and like the recently published copper study a lot, but I recently had two experiences that gave me three good reasons why not to “copperize” a hospital room.

Firstly, I was kindly given a copper pen at a conference. I’ve had it for a few months now and it’s beginning to look slightly the worse for wear (note the tarnishing where my grubby mits have been holding it, and the bright shiny part that has had less exposure to air underneath the swivel top). Is this how a bedrail would look after a few months of use?

copper pen annotated

Secondly, the pen works well but my hands smell of metal after using it. Would it be the same after touching my copper bedside table?

Thirdly, we had a new boiler installed last year resulting in a small pile of scrap copper pipes. I eventually got around to taking the copper pipes to the scrap metal merchant last weekend, expecting to get nothing for them and he gave me £50. So, exactly how much would it cost to “copperize” a hospital room, and would you really see ‘payback in less than one year’?

I appreciate that much of this may have to do with the composition of the copper alloy. I would imagine that reducing the amount of copper in the alloy would mean lower cost, less smell and less tarnishing. However, it would also reduce the ability to inactivate microbes deposited on the surfaces, so the research data really only applies to the composition of the copper alloy in the items that were tested. Also, there’s been some academic criticism of the copper study on the Controversies in Hospital Infection Prevention blog which is worth reading.

There are still a lot of questions around the implementation of copper surfaces in hospital rooms, and there are other options to consider. But I do think we should be thinking seriously about evaluating the clinical impact and cost-benefit of implementing antimicrobial surfaces.

How the implementation of hydrogen peroxide vapour (HPV) could save you money

On a recent trip to the US, I asked five or six hospitals what their policy was for dealing with packaged medical supplies (syringes, dressings etc) from the rooms of patients on precautions for MDROs. The response was startling: every hospital had a different policy. The policies ranged from 100% disposal of supplies for every discharge through a “toss heavy toss light” approach depending on the perceived risk of the patient to 0% disposal. I scoured international guidelines and, save a few organism-specific guidance documents, there is no direction on this issue in the guidelines.

What actually happens is another issue. Hospitals with a 100% disposal policy knew that staff often could not bring themselves to throw away perfectly good, sometimes fairly valuable items (IV sets and the like) for the small risk that the packaging may be contaminated. Some threw their supplies into “third world bins” to send to underprivileged hospitals, which is great, unless they happen to be contaminated with an MDRO that would survive the journey! Conversely, hospitals with a 0% disposal policy know that sometimes staff threw out the supplies if the patients had a high perceived risk of shedding. As for the “toss heavy toss light” hospitals: who knows what actually happens.

So, is there a real risk associated with contamination of the packaging of these items? A recent study by Johns Hopkins published in the recent ICHE special issue sampled a selection of supplies to quantify the risk, counted the cost of their current policy and found a potential solution in the use of hydrogen peroxide vapour (HPV) for the disinfection of the supplies. The study found that the packaging of 7-9% of supply items was contaminated with MDROs, and that hydrogen peroxide vapor (HPV) was effective for the disinfection of the supply packaging. The cost of supplies discarded from six ICUs amounted to almost $400,000, not including the costs associated with waste disposal. Hence, the practice of disinfecting the packaging of supplies using HPV would generate substantial cost savings.