Teixobactin: a “resistance proof” antibiotic? No chance!

It’s not often that I feature a mighty Nature paper on this ‘lil old blog, but this is a big one. A team from Northeastern University in Boston and a small company called NovoBiotic Pharmaceuticals have discovered a truly novel antibiotic, called ‘teixobactin’.

The finding stems from the fact that 99% of microbes in the external environment cannot be cultured in the laboratory. In order to overcome this problem, the authors ingeniously brought the laboratory to the soil by using the iChip (pictured below). The iChip is a way of capturing the growth of a microbe in its natural environment. Curiously, once grown in the iChip, most of the colonies could then be sub-cultured in the laboratory. When using the iChip, around 50% of the microbes in the soil can be cultured (compared with 1% using conventional methods).

ichip

The authors then screened extracts from an awful lot of isolates (10,000) for antimicrobial activity, and found one that stood out: ‘teixobactin’. It’s a novel cell wall inhibitor that interrupts peptidoglycan synthesis not by targeting proteins (such as the enzymes targeted by β-lactams), but by targeting lipids.

Teixobactin has impressive activity against a range of Gram-positive pathogens of importance to healthcare including S. aureus, E. faecium / faecalis, various streptococci, M. tuberculosis and, importantly, C. difficile. The authors found that teixobactin had equivalent activity to oxacillin (methicillin) in vitro, and superior activity to vancomycin both in vitro and in an animal model.

However, there are some problems:

  • Firstly, and most importantly, there is no activity against Gram-negative bacteria. Since the source microbe, the newly described Elftheria terrae, is a Gram-negative bacterium, this is no surprise, otherwise it would inhibit itself in the soil!
  • Secondly, the antibiotic is still a long way from the clinic, and has to undergo a series of rigorous human clinical trials before reaching the pharmacy shelves.
  • Thirdly, the authors made the promising discovery that they did not identify reduced susceptibility to teixobactin despite serial passage to sub-inhibitory doses for 27 days. The press have had a field day with this, and are talking in terms of “resistance resistant” antibiotics. But this is too much: the authors parallel the potential for resistance to teixobactin with the potential for resistance to vancomycin – and we are increasingly seeing clinically meaningful reduced susceptibility to vancomycin. There’s a rather obscure and quite frightening study showing that vancomycin resistance could be just around the corner: the study found that S. aureus exposed to sub-lethal doses of chlorhexidine as a surface biofilm became resistant to vancomycin after 48 hours (MIC >128 mg/L). So, bacteria will become resistant to whatever we throw at them, to a lesser or greater degree, given time and sub-lethal exposure.

So, teixobactin represents and exciting and huge leap forward in the process of antibiotic drug discovery – and we can expect more novel antibiotics to follow. However, we’d be foolish to think that resistance to teixobactin will not emerge in time.

Citation: Ling LL, Schneider T, Peoples AJ et al. A new antibiotic kills pathogens without detectable resistance. Nature 2015.

Image: NBC news.