What's lurking in the hospital environment?

The importance of cleaning and disinfection in infection prevention and control

16/06/15

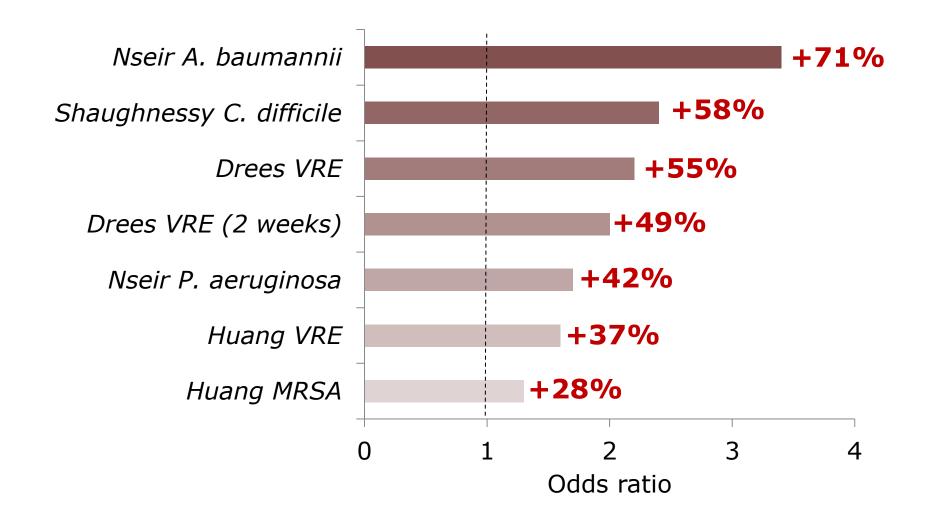
Jon Otter, PhD FRCPath
Imperial College Healthcare NHS Trust

Blog: <u>www.ReflectionsIPC.com</u>

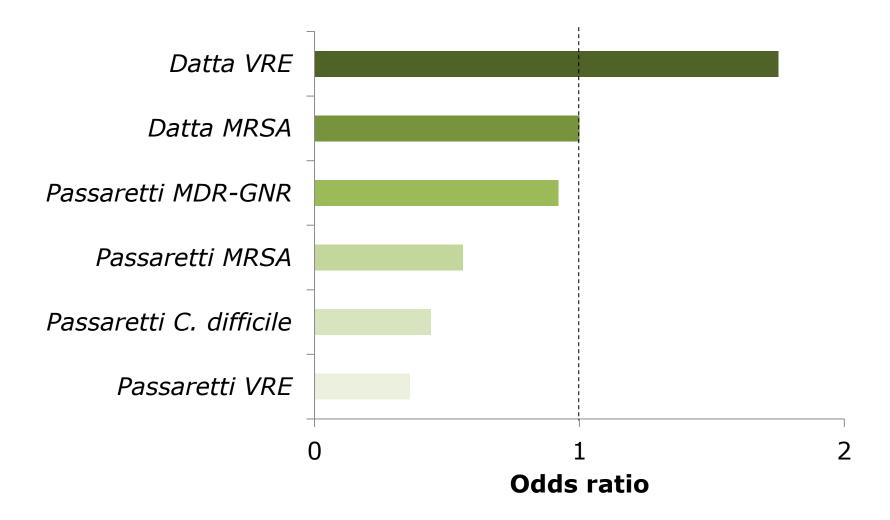
Twitter: @jonotter

Room A Room B

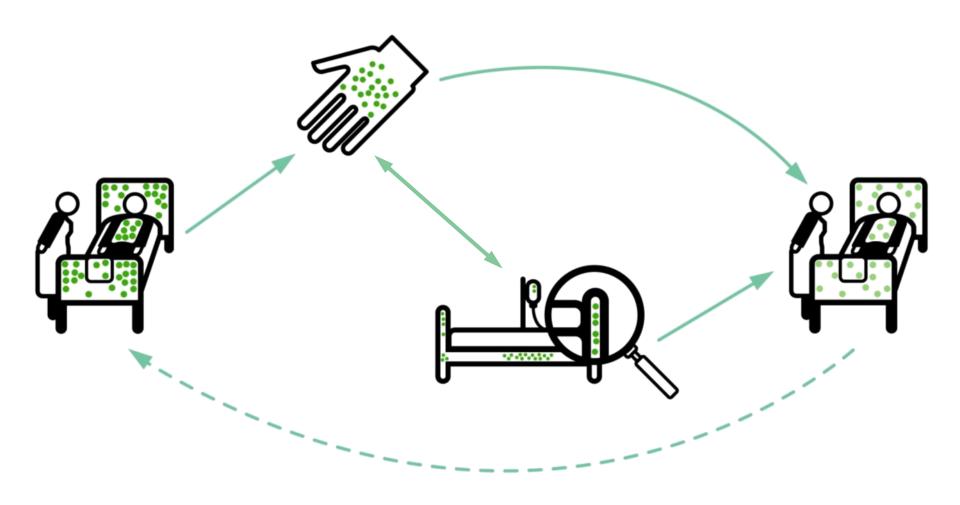
'The room lotto'


Patient infected or colonised with a pathogen (e.g. *C. difficile*, MRSA, VRE, *A. baumannii* or *P. aeruginosa*)

Patient is discharged and the room is cleaned / disinfected; surfaces in the room remain contaminated with the pathogen


The next room occupant is at an increased risk of acquiring the pathogen

Increased risk from the prior room occupant

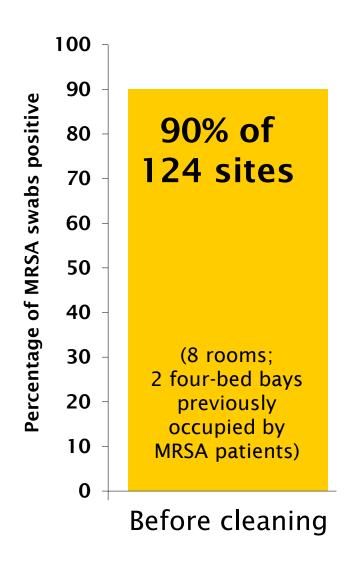

Otter et al. Am J Infect Control 2013;41(5 Suppl):S6-11.

Taking the 'lotto' out of the room

Datta et al. Arch Intern Med 2011;171:491-494. Passaretti et al. Clin Infect Dis 2013;56:27-35.

Transmission routes

Otter et al. Infect Control Hosp Epidemiol 2011;32:687-699.


Surface survival

Organism	Survival time
Clostridium difficile (spores)	5 months
Acinetobacter spp.	3 days to 5 months
Enterococcus spp. including VRE	5 days – 4 years (!) ¹
Pseudomonas aeruginosa	6 hours – 16 months
Klebsiella spp.	2 hours to > 30 months
Staphylococcus aureus, inc. MRSA	7 days – 7 months
Norovirus (and feline calicivirus)	8 hours to > 2 weeks ²
SARS Coronavirus	72 hours to >28 days ³
Influenza	Hours to several days ⁴

Adapted from Kramer et al. BMC Infect Dis 2006;6:130.

- 1. Wagenvoort et al. J Hosp Infect 2011;77:282-283.
- 2. Doultree et al. J Hosp Infect 1999;41:51-57.
- 3. Rabenau et al. Med Microbiol Immunol 2005;194:1-6.
- 4. Bean et al. J Infect Dis 1982;146:47-51.

Conventional terminal cleaning

French et al. J Hosp Infect 2004;57:31-37.

Pathogens can be transferred from hospital surfaces to HCW hands without direct patient contact¹⁻²

52% of 23 HCW acquired VRE on their hands ³	Contact with patient or surface = $\sim 10\%$ risk of acquiring VRE ³
45% of 50 HCW acquired MRSA on their hands ⁴	40% of 50 HCW acquired MRSA on their hands ⁴
50% of 30 HCW acquired <i>C. difficile</i> on their hands ⁵	50% of 30 HCW acquired <i>C. difficile</i> on their hands ⁵
Compliance with hand hygiene: 50% ⁶	Compliance with hand hygiene: 80% ⁶

- 1. Boyce et al. Infect Control Hosp Epidemiol 1997;18:622-627.
- 2. Bhalla et al. Infect Cont Hosp Epidemiol 2004;25:164-167.
- 3. Hayden et al. Infect Control Hosp Epidemiol 2008;29:149-154.
- 4. Stiefel et al. Infect Control Hosp Epidemiol 2011;32:185-187.
- 5. Guerrero et al. Am J Infect Control 2012;40:556-558.
- 6. Randle et al. J Hosp Infect 2010;76:252-255.

Learning objectives

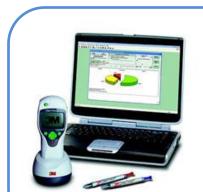
- 1. Understand the key data supporting the role of contaminated surfaces in the transmission of hospital pathogens
- 2. Become familiar with the various methods to improve the efficacy of hospital disinfection:
 - Tools such as ATP assays and fluorescent markers to evaluate the thoroughness of the cleaning process;
 - Methods to improve the education and training of cleaning staff.
- 3. Discuss the results of improved cleaning and disinfection in reducing transmission of pathogens
- 4. Understand other and emerging approaches including:
 - Measures to reduce and contain shedding more effectively;
 - New disinfectants, cleaning materials and consideration of automated systems;
 - Antimicrobial surfaces;
 - Improved design to improve 'cleanability'.

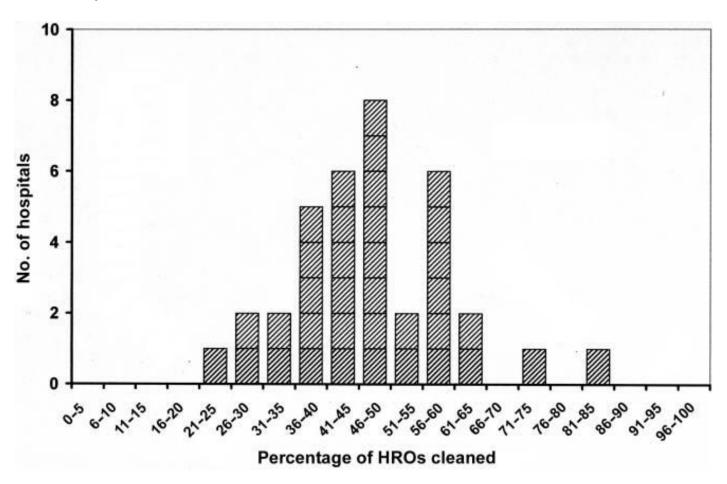
Try something new!

Try something new!

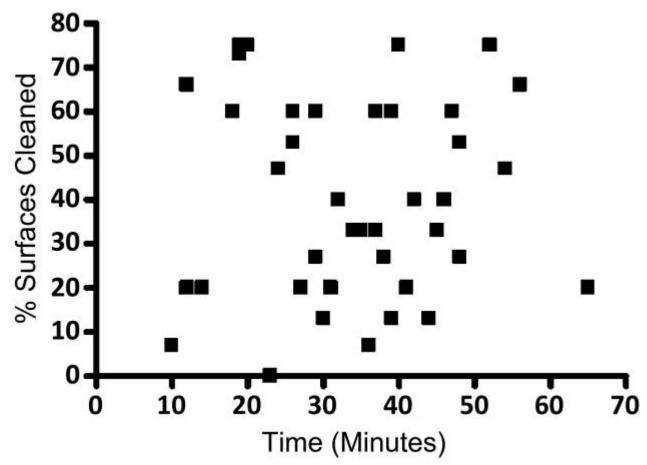
Education & training

Question	"Answer"
What to clean?	Focus of "high-touch" sites seems sensible
Who cleans what?	Checklists can help
What agent(s) to use?	Depends on the situation; sporicidal agent for <i>C. difficile</i>
What materials to use?	Microfibre may help Wipes have pros and cons "Bucket method" most effective
How to educate staff?	More than we currently do! Difficult task
Daily cleaning: how often?	Evidence for daily or twice daily
Terminal cleaning: optimal protocols?	More stringent protocol should be used for terminal disinfection


Try something new!



Why bother?


Baseline cleaning rates of 'high-risk objects' in 36 acute US hospitals, as determined by removal of a fluorescent marker.

Carling et al. Infect Control Hosp Epidemiol 2008;29:1035-1041.

Why bother?

The time taken to clean a room does not correlate with the thoroughness of cleaning, as determined by removal of a fluorescent marker

Rupp et al. Infect Control Hosp Epidemiol 2013;34:100-102.

Visual assessment

- Visual assessment of hospital cleaning is performed by measuring the apparent cleanliness of a room against a checklist.^{1,2}
- A room needs to be visually clean to be acceptable to the current and subsequent occupant.

Visual assessment of hygiene does not correlate with microbial contamination, and can thus be a misleading measure of cleanliness³⁻⁵

- 1. Sherlock et al. J Hosp Infect 2009;72:140-146.
- 2. Mulvey et al. J Hosp Infect 2011;77:25-30.
- 3. Griffith et al. J Hosp Infect 2007;66:352-359.
- 4. Cooper et al. Am J Infect Control 2007;66:352-359.
- 5. Griffith et al. J Hosp Infect 2000;45:19-28.

Microbiological samples

- Microbiological surface cultures can be qualitative (pathogen presence or absence) or quantitative (aerobic colony counts)
- Several different sampling methods available; usually swabs (with or without enrichment) or contact plates
- Quality standards for both aerobic colony counts (<2.5 cfu / cm²) and specific indicator organisms (<1 cfu / cm²) have been proposed.^{1,2}

Cost and practicality mean that routine microbiological sampling is rarely performed

- 1. Mulvey et al. J Hosp Infect 2011;77:25-30.
- 2. Malik et al. Am J Infect Control 2003;31:181-187.

ATP assessment

- Adenosine triphosphate (ATP) is the "energy currency" of all living cells.
- Surfaces can be swabbed and a hand-held sensor can give a realtime quantitative measurement of ATP from the surface.
- Several "quality standards" have been set as relative light unit (RLU) thresholds, ranging from 100-500.¹⁻³

There is no direct correlation between RLU and microbial contamination, but "hygiene fails" determined by aerobic colony count and ATP do correlate^{1,2}

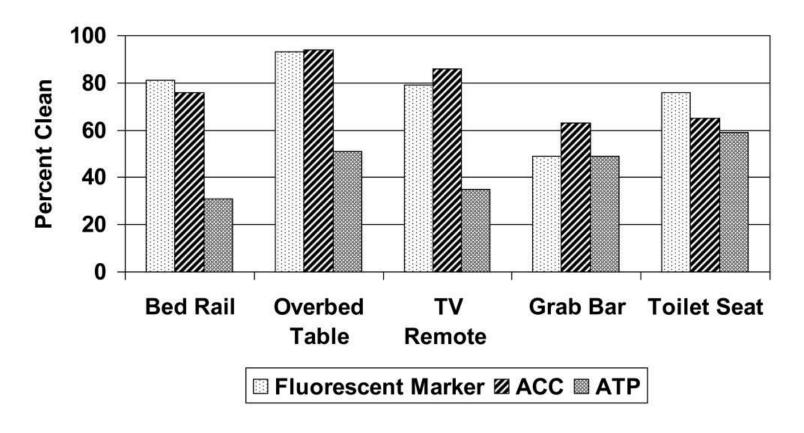
- 1. Boyce et al. Infect Control Hosp Epidemiol 2011;32:1187-1189.
- 2. Mulvey et al. *J Hosp Infect* 2011;77:25-30.
- 3. Whiteley et al. Healthcare Infection 2012;17:91-97.

Fluorescent markers

- Fluorescent material in the form of gel, powder or lotion can be applied to a surface and its removal assessed by a 'black light'
- The % removal of the spots is used to evaluate cleaning performance.^{1,2}
- Educational interventions can improve significantly the removal of the market spots.²⁻³

The removal of marked spots has been shown to correlate with microbial contamination in some studies;²⁻³ cleaning staff may "get wise" to the location of the spots and preferentially target them⁴

- 1. Boyce et al. Infect Control Hosp Epidemiol 2011;32:1187-1189.
- 2. Carling et al. Infect Control Hosp Epidemiol 2008; 29:1035-1041.
- 3. Munoz-Price et al. Infect Control Hosp Epidemiol 2012;33:897-904.
- 4. Rutala et al. Infect Control Hosp Epidemiol 2011;32:743-747.


Method comparison

	Visual	Micro	ATP	Fluorescent
Ease of use	High	Low-Moderate	High	High
Quantitative	No	Yes/No	Yes	No
Correlation with microbial contamination	Poor	Accurate	Indirect	Indirect
Identifies pathogens	No	Yes/No	No	No
Risk of "gaming" by staff	Low	Low	Low	Moderate
Identifies 'dirty' surfaces*	Yes	No	Yes	No
Published evidence of attributable clinical impact	No	Yes	No	No

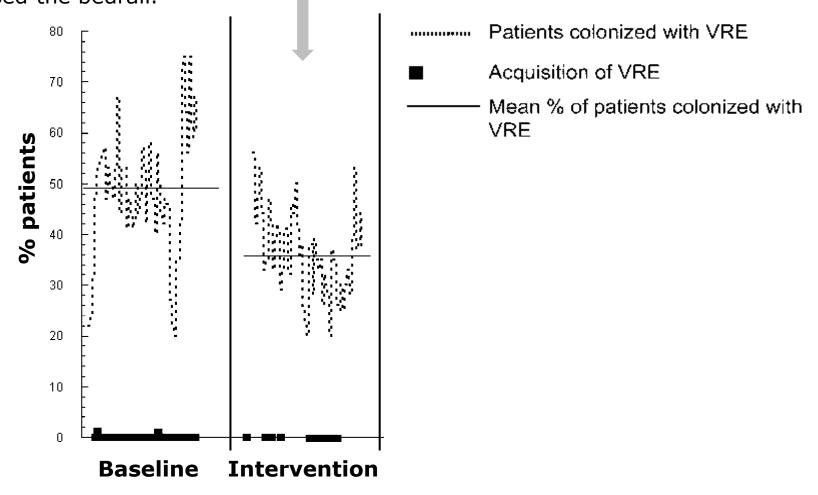
^{*} Non-microbial soiling

Method comparison

- 5 sites in 100 patient rooms assessed before and after terminal clean
- "Clean" defined as <2.5 cfu/cm², complete removal of fluorescent marker and ATP score of <250 RLU

Boyce et al. Infect Control Hosp Epidemiol 2011;32:1187-1189.

Method comparison


- 5 sites in 50 patient rooms assessed before and after terminal clean
- "Gold standard = <2.5 cfu/cm² compared with complete removal of fluorescent marker and ATP score of <250 RLU

	Test	Sensitivity (%)	Specifici (%)	ty PPV (%)	NPV (%)
Overall	Dazo	68	50	90	19
N = 250	ATP	78	38	90	20
,	Visual	95	9	9	23
Baseline dirty n = 103	Dazo	75	40	84	28
	ATP	76	35	83	26
	Visual	94	10	81	29

Luick et al. Am J Infect Control 2013 in press.

Impact of environmental hygiene intervention on VRE incidence

Research staff monitored cleaners' work overtly, using a checklist. Cleaners were given immediate, specific feedback about their performance, e.g., "You missed the bedrail."

Hayden et al. Clin Infect Dis 2006;42:1552-1560.

Try something new!

Source control

Daily bathing of patients using chlorhexidine reduces the acquisition of MDROs, 1,2 including C. difficile. 3

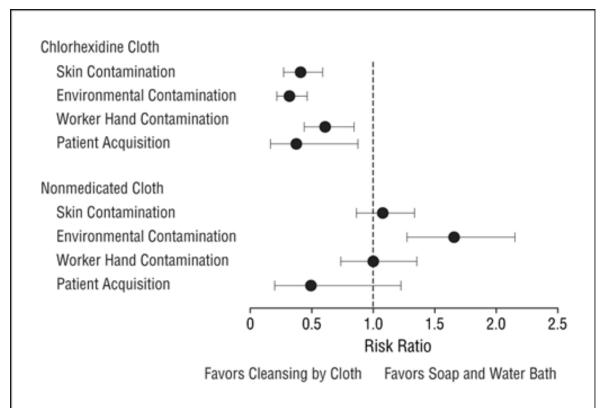
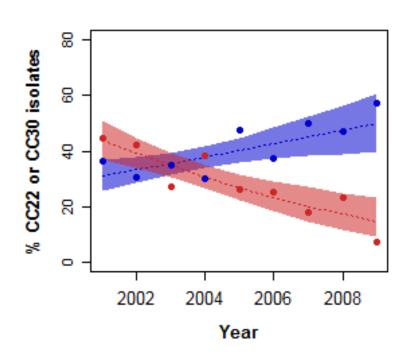
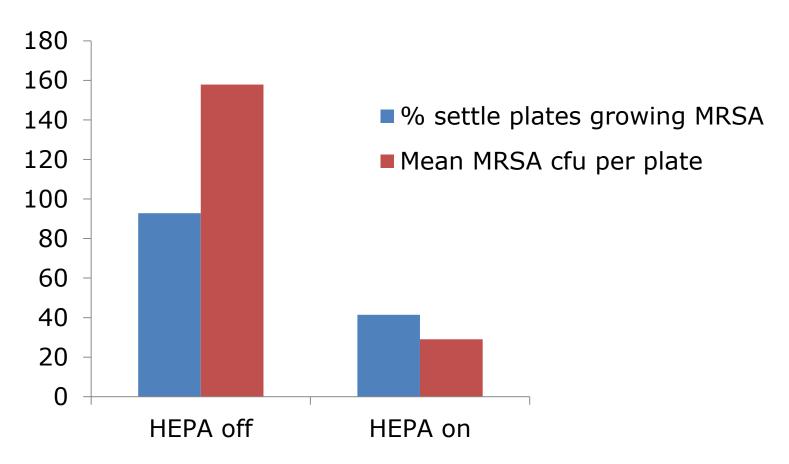



Figure from Vernon *et al.*²

- 1. Climo *et al. N Engl J Med* 2013;368:533-542.
- 2. Vernon et al. Arch Intern Med 2006;166:306-312.
- 3. Rupp et al. Infect Control Hosp Epidemiol 2012;33:1094-1100.

Source control

% dacA positive isolates % dacA positive isolates 2002 2004 2006 2008 Year


Proportion of MRSA bloodstream infections caused by CC22 (blue) and CC30 (red)

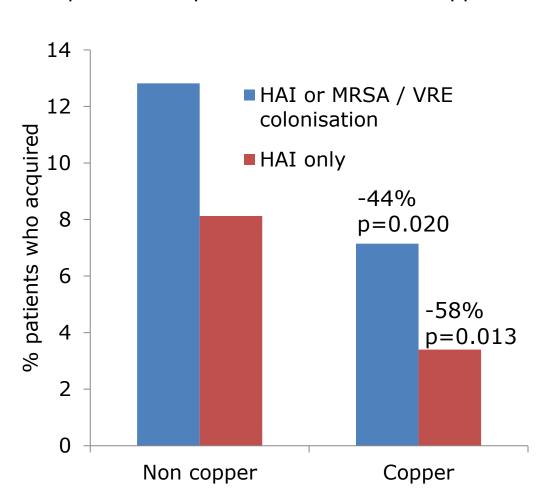
Carriage of *qacA* CC22 (blue), CC30 (red) and other (green) clones

Otter et al. J Antimicrob Chemother 2013;68:992-999.

Air control

MRSA contamination of settle plates in multiple locations in the rooms of three patients with MRSA

Boswell & Fox. *J Hosp Infect* 2006;63:47-54.


Antimicrobial surfaces

Candidate	Pros	Cons			
	Metal				
Copper	Rapidly microbicidal Reduces acquisition	? Sporicidal Acceptability / retrofitting			
Silver	Rapidly microbicidal	? Sporicidal Tolerance development			
Chemical					
Organosilane	Easy to apply	Limited microbicidal activity Durability			
Light-activated	Broadly microbicidal	? Sporicidal			
Topography					
"Liquid glass"	Reduces deposition Improves 'cleanability'	Not microbicidal			
Sharklet pattern	Reduces deposition Reduced biofilms	Not microbicidal			

Page et al. J Mat Chem 2009

Copper

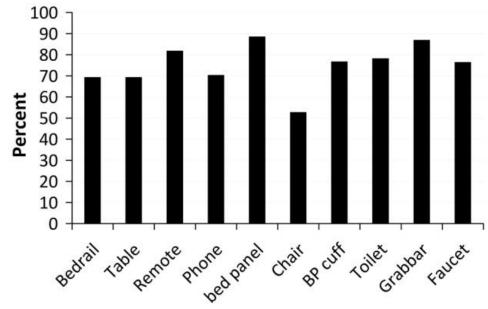
614 pts in 3 hospitals randomised to 'copper' or 'non-copper' ICU rooms

Bedrails
Overbed tables
IV poles
Visitor chair arms
Nurse call button*
Computer mouse*
Computer palm rest*
Rim of monitor*

(* = some rooms only)

Salgado et al. Infect Control Hosp Epidemiol 2013;34:479-486.

Try something new!



Wipes

- 99% of sites <2.5 cfu/cm²
- 75% of sites no growth after cleaning (figure)

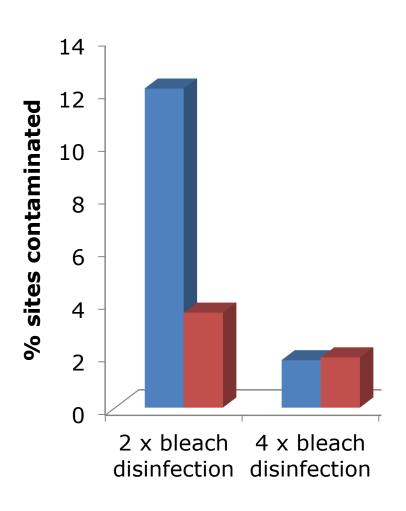
Evaluated hydrogen peroxide impregnated wipes by sampling 10 sites in 72 rooms before and after cleaning.

Boyce & Havill. Infect Control Hosp Epidemiol 2013;34:521-523.

"No touch" disinfection

Hydrogen peroxide vapour (HPV)

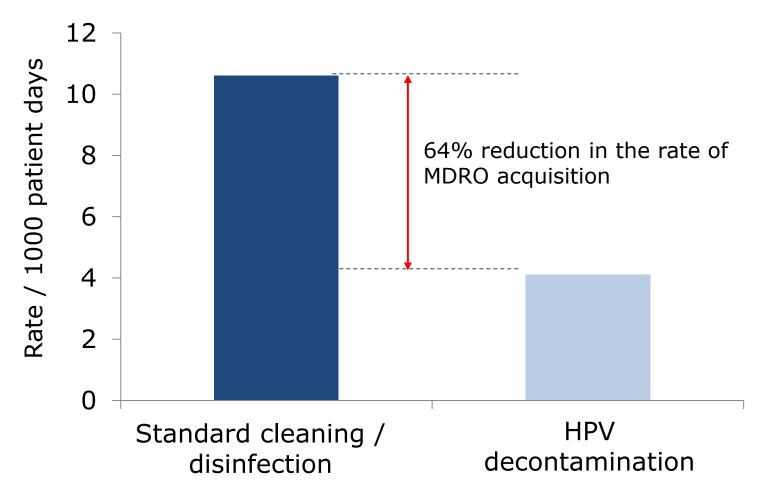
Aerosolised hydrogen peroxide (aHP)



Ultraviolet radiation C (UVC)

Pulsedxenon UV (PX-UV)

Reduce contamination



- % sites contaminated with A. baumannii
- % sites contaminated with MRSA
- 140 samples from 9 rooms after 2xbleach
- 5705 samples from 312 rooms after 4xbleach
- 2680 sites from 134 rooms after HPV

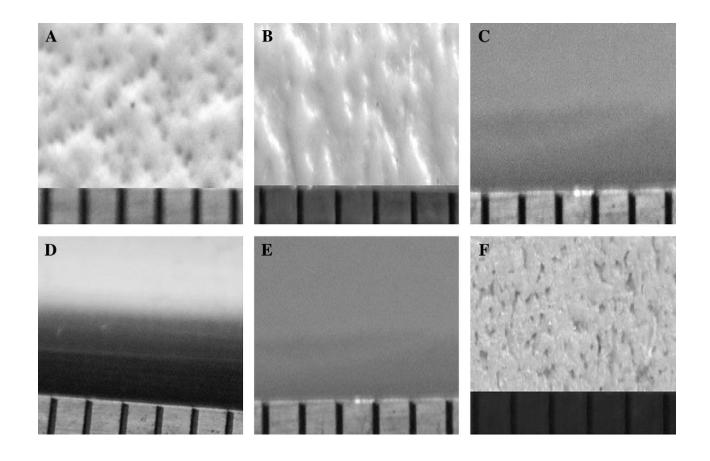
Manian et al. Infect Control Hosp Epidemiol 2011;32:667-672.

Reduce transmission

Patients admitted to rooms decontaminated using HPV were 64% less likely to acquire any MDRO (incidence rate ratio [IRR]=0.36, CI=0.19-0.70, p<0.001)

Passaretti et al. Clin Infect Dis 2013;56:27-35.

Try something new!



Design

The surface finish of 6 hospital bedrails; ease of cleaning was inversely proportional to the transfer of *S. aureus* from the surfaces

Ali et al. J Hosp Infect 2012;80:192-198.

"Design bugs out!"

Design Bugs Out – Product Evaluation Report. The Healthcare Associated Infection Technology Innovation Programme. UK Department of Health. 2011.

Try something new!

Learning objectives

- 1. Understand the key data supporting the role of contaminated surfaces in the transmission of hospital pathogens
- 2. Become familiar with the various methods to improve the efficacy of hospital disinfection:
 - Tools such as ATP assays and fluorescent markers to evaluate the thoroughness of the cleaning process;
 - Methods to improve the education and training of cleaning staff.
- 3. Discuss the results of improved cleaning and disinfection in reducing transmission of pathogens
- 4. Understand other and emerging approaches including:
 - Measures to reduce and contain shedding more effectively;
 - New disinfectants, cleaning materials and consideration of automated systems;
 - Antimicrobial surfaces;
 - Improved design to improve 'cleanability'.